The relationship of diet to bone growth and bone discoloration
S. Singla, D. Korver, M. Betti*
University of Alberta,

Background
- The growth rate of birds effects bone growth with higher growth rate resulting in less bone mineral content and greater bone porosity as compared to slow growing birds.
- The long bones (broiler thighs) contain pigment hemoglobin and high bone porosity causes its leakage onto bone surface.
- After freezing and cooking hemoglobin along with the muscle pigment myoglobin undergo oxidation and denaturation discolouring the bone and meat adjoining bone.
- This oxidation depends on state of iron (ferrous or ferric) present in these pigments.
- Type of diet fed effects bone growth of broilers and vitamin D is the major feed component as it effects Ca and P metabolism.

Purpose of study
- Vitamin D from diet or in skin from UV radiations of sun undergo enzymatic hydroxylation to form 25-hydroxyvitamin D$_3$ (25-OHD$_3$) in liver and further to 1,25-dihydroxyvitamin D$_3$ in kidney (1,25-OHD$_3$).
- The under developed enzyme system in the bird’s early life and certain stresses or diseases of liver may impair hydroxylation of vitamin D to 25-OHD$_3$.
- Feeding of the 25-OHD$_3$ directly instead of vitamin D may be helpful and so the study was designed to study the effect of feeding 25-OHD$_3$ on the meat characteristics as well as meat and bone color in broiler chicken thighs.

Experimental Design
- 320 broilers (Male Ross 302) were raised at PRC unit of U of A and fed 3 diets: vitamin D, 25-OHD$_3$ and 1,25-OHD$_3$.
- At 40 d age 120 left broiler thighs were recovered after bird slaughtering and air chilling.
- Thighs were divided into 3 groups of 40 thighs each based on diet fed and each diet group had four sub-groups with 10 thighs in each: fresh raw, fresh cooked, frozen raw, frozen cooked.
- Freezing was done at -20°C for 4 wks and cooking in hot air oven was done at -180°C till core meat temp. reached 80°C.
- Heme iron, nonheme iron, total pigments, total myoglobin, pH and colour were measured for each thigh.

Results and Discussion
- The lower heme iron in 25-OHD$_3$ fed birds than vitamin D and dilute groups (Figure 1) indicates lower pigment leakage from bones which may be due to increased bone mineralization. However after freezing or cooking differences were not found.
- The denaturation of total pigments and myoglobin lead to their decrease after freezing and cooking.
- Freezing favored myoglobin oxidation indicated by decrease in oxymyoglobin and an increase in metmyoglobin content with no diet effect.
- The color of meat become lighter after cooking although there was a pigment leakage (Figure 2).

Conclusion and Relevance
- 25-OHD$_3$ supplementation may be useful in improving bone quality but the diets fed did not darken color of meat under the applied conditions.
- Genetics of birds also affect their growth rate so different broiler strains with 25-OHD$_3$ supplementation need to be studied.

Acknowledgement
We are thankful to Alberta Livestock and Meat Agency, DSM Nutritional Products for their support.

*Dr. Mirko Betti (Associate Professor)
Dept. of AFNS, University of Alberta, Edmonton

Figure 1: Diet x freezing x cooking interaction

Figure 2: Effect of cooking on broiler bone-in thighs