

The Poultry Research Centre A leader in poultry research and learning.

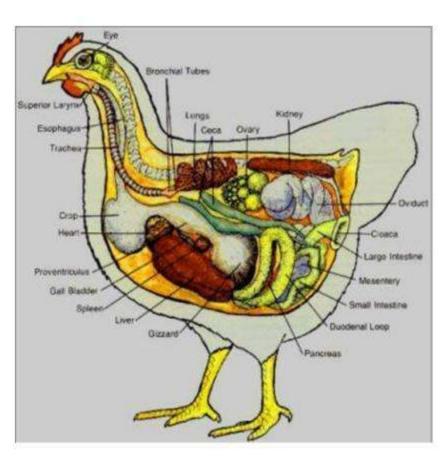
Uniformity and Stability of Omega-3 PUFA Enriched Table Eggs Nain, S., and R. A. Renema **Poultry Research Centre, University of Alberta, AB. Canada**

Background

> The diet containing fat soluble enrichment ingredients (Omega-3 polyunsaturated fatty acids (ω -3 PUFA), Lutein and Vitamin E) can be fed in hen diets to enrich eggs for consumer use.

> The use of 10 to 15 % flax in feed is most economical way to enrich the egg with ω -3 PUFA.

> The use of extruded flax or ground flax with carbohydrase enzymes are efficient way to enrich egg with ω -3 PUFA.

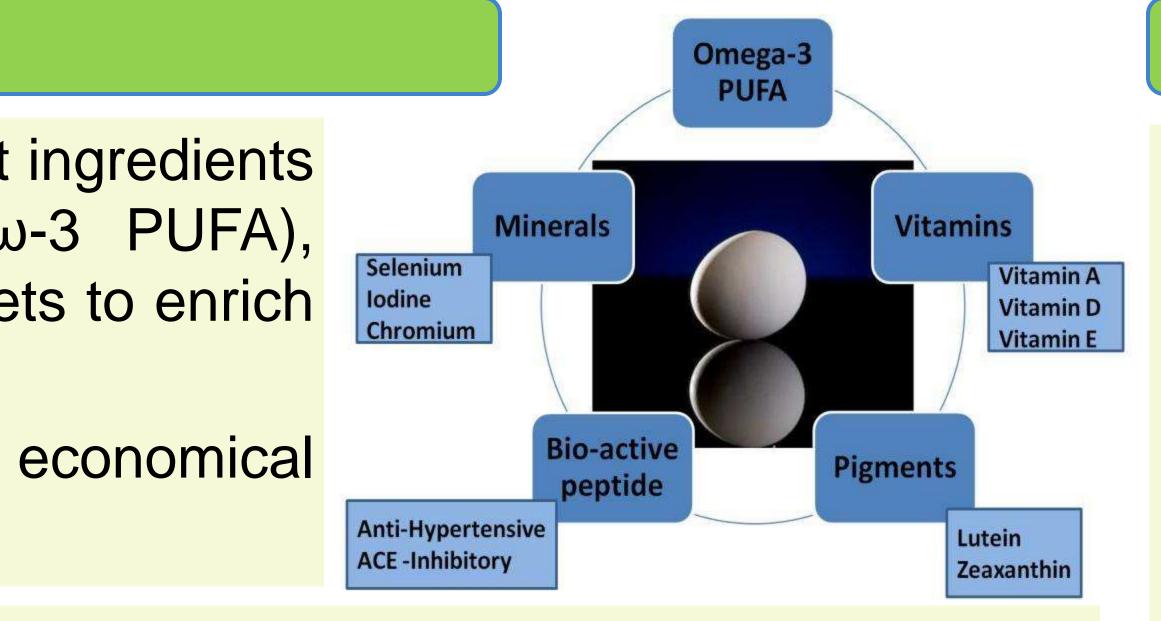

 \geq The ω -3 PUFA in eggs has proven health benefits to the human in preventing chronic heart disease.

 \succ The flax is primarily a source of medium chain ω -3 PUFA, LNA, however, birds can convert LNA into EPA and DHA.

LNA

Medium chain ω-3 PUFA

> Lutein in egg yolk is most bioavailable for humans and prevents age related macular degeneration in eyes.



Normal

 \succ To optimize the level and duration of feeding ω -3 PUFA enriched diet to prevent overloading of ω -3 absorption capability of bird. > Alberta Livestock Industry Development Fund, Agriculture and Food Council, Poultry Industry Council, Alberta Egg Producers, and Alltech. Inc \succ Uniform and stable enrichment level in each egg at low cost of production.

The Poultry Research Centre

Poultry Research

As Age Advances

What we observed ?

 \geq The target threshold of 300 mg of total ω -3 PUFA/egg (Market labeling) requirement) can be achieved in just 5 d using a 15% of an extruded flax product. > The feeding of extruded flax as in Linpro (equivalent to 7.5% flax) had resulted in higher ω -3 PUFA enrichment compared to feeding 10 % of ground flax in hen ration. \succ There is no negative interaction of feeding 10% of flaxseed with lutein (500 ppm)

in hen ration for the enriching eggs.

 \geq The Long chain ω -3 PUFAs (multiple double bond) in egg yolk are highly susceptible to oxidative damage during the storage of egg for 30 d at 4 C with most prominent reduction in C 20:5 ω-3 (EPA).

 \geq Inclusion of lutein to the flax diet had protective effect on the Long Chain ω -3 PUFAs during storage.

 \succ The hens grouped on the base of energetic efficiency had differences at the gut level, with the Efficient hens had 25% longer villi, resulting in greater absorptive surface area/villi than in Non-efficient.

 \succ The co-efficient of variability for total ω -3 PUFA in egg yolk from efficient hens was lower than that of non-efficient birds (11.1 vs. 21.4), indicating a more uniform level of enrichment.

What does this mean?

> Strategies to improve incorporation of enrichment ingredients into the yolk include modifying the mode of delivery of ingredient, or modifying the ingredients themselves.

 \succ Feeding the enrichment ingredients beneficial for birds, targeting the human health and with increased stability will helpful to economize the enrichment process.

 \succ Utilizing more energetically efficient birds for the purpose of value-added egg enrichment might help in reducing the variability in end product.

> Feeding the birds at right age with optimum dietary level and time period will help to reduce the individual bird to bird variability to transfer the enrichment.

Acknowledgement

www.poultryresearchcentre.com