The Effect of Sulfitolysis on the Allergenicity of Egg White Protein Bushra A. Malik and Jianping Wu Department of Agricultural, Food and Nutritional Science University of Alberta

Summary

An allergy is an overreaction of the immune system to a normally harmless substance called an allergen. In this study a chemical additive, sodium sulfite (Na_2SO_3), is considered in an attempt to improve digestibility and reduce egg white protein (EWP) allergenicity by protein modification.

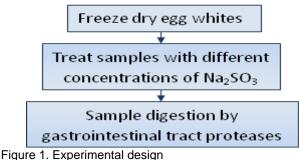
Background

An allergic reaction to a food is in fact an allergic reaction to individual food components, mainly proteins. Studies confirm the major egg allergens originate primarily from egg white proteins; these include ovomucoid (OVM), ovalbumin (OVA), ovotransferrin (OTf), and lysozyme (HEWL). Table 1 depicts the select properties of proteins of interest. Increasing research into characterizing the protein allergens has led to a great interest of food manufacturers to develop hypoallergenic food products without compromising the beneficial properties of the food. Treating disulfide bonds (S-S) in proteins with sodium sulfite (Na_2SO_3) cleaves S-S bonds producing approximately equimolar amount of free thiols (-SH) and thiosulfates (S-sulfonic acid, -S-SO₃H), a process known as sulfitolysis, depicted in reaction 1.

$\text{RSSR} + \text{Na}_2\text{SO}_3 \rightarrow \text{RSH} + \text{RS-SO}_3\text{H}$

Reaction 1. Sulfitolysis

Cleaving the proteins would affect the hydrophobicity character of the protein surface and the introduction of the SO_3 - groups would increase the negative charge of the protein and thus may improve the digestibility/ solubility characteristics and perhaps reduce the allergenicity.


Table 1. Proteins of interest

Protein	Protein Content (%)	Allergenic activity	No. of Disulfide Bridges
OVA	54	++	1
OTf	13	+	15
OVM	11	+++	3
HEWL	3.4	++	4

Objective

To investigate whether treating egg white proteins with different concentrations of Na_2SO_3 would improve the digestibility, and thus reduce the allergenicity of egg white proteins in the process.

Methodology

Further, protein aliquots are withdrawn pre- and postenzymatic digestion and various analyses are carried out to understand the effect of the salt concentrations.

Analysis

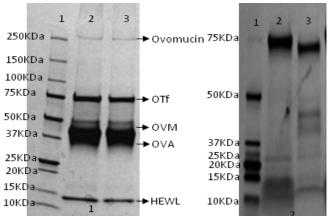


Figure 2. The SDS-PAGE pattern.

Gel 1: Protein pattern produced pre-digestion, lane 1 = standard molecular weight protein marker; lane 2&3 = untreated EWP (control). Gel 2: Digestive enzymes cleave specific peptide bonds within proteins, producing polypeptide fragments. The gel depicts patterns of proteins and peptides produced post-digestion. Lane 1 = standard molecular weight peptide marker; lane 2= EWP post pepsin digestion; lane 3 = EWP post-pepsin/pancreatin digestion.

More investigative studies are necessary to investigate whether this method can be adapted to industrial scale for sulfonation of egg white protein to improve digestibility and reduce allergenicity.

Acknowledgements

Egg Farmers of Canada

Contact Information

Dr. Jianping Wu, PhD Department of Agricultural, Food and Nutritional Science 4-10 AFDP, University of Alberta E-mail: Jianping.Wu@ales.ualberta.ca

