Can chicken gelatin kill bugs?
Daylin J. Hincapie, Michael Gänzle, Mirko Betti

BACKGROUND
- The valorization of by-products is one of the main reasons to explore proteins/peptides functionality and bioactivity;
- Gelatin from by-products is one of the most popular biopolymers widely utilized in various industries for its unique properties;
- Therefore, gelatin hydrolysates with further incorporation of saccharides could extend their range of functions in food systems.

OBJECTIVES
- Analyze antimicrobial activity of the different fractions obtained from glycated/glycosylated poultry gelatin hydrolysates;
- Identify the compound/compounds with antimicrobial activity. Is there any synergy between glycopeptides?

OUR APPROACH
1. Hydrolysate preparation:

 ![Flowchart of Hydrolysate Preparation]

 - Gelatin
 - Poultry by-products
 - Enzymatic hydrolysis
 - Endopeptidase
 - Incubation
 - Filtration
 - Freeze-dried or liquid system

2. Incorporation of sugar:

 ![Flowchart of Incorporation of Sugar]

 - Glycation
 - Glycosylation
 - Enzymatic reaction
 - Non-enzymatic reaction
 - Hydrolysate/sugar solution
 - Incubation (25°C and 37°C)
 - Ultrafiltration
 - Antimicrobial activity tests

3. Fractionation:

 ![FPLC Chromatogram](Hong P., et al 2013. Submitted paper)

 - Fractionation of glycopeptides using FPLC (fast protein liquid chromatography).

4. Antimicrobial activity on E. coli and B. subtilis:

 - MIC: smallest amount to inhibit bacterial growth
 - MBC: smallest amount to kill bacteria

 ![Isolates Chromatogram](Figure 2. Isolates chromatogram)

 - Fraction/isolates dilution
 - Control
 - Treated

5. Isolation and identification:

 - Isolation of the different peptides/glycopeptides from the active fraction to analyze antimicrobial activity.

WHAT TO EXPECT?
- Isolated glycopeptides from chicken gelatin that can act as preservatives in food systems to extend shelf life;
- Active compounds from chicken gelatin added to meat and dairy products to minimize food borne diseases by killing bacteria.

ACKNOWLEDGEMENTS
The authors would like to thank the Alberta Livestock Meat Agency (ALMA) for funding this project.